Improving phylogenetic regression under complex evolutionary models.

نویسندگان

  • Florent Mazel
  • T Jonathan Davies
  • Damien Georges
  • Sébastien Lavergne
  • Wilfried Thuiller
  • Pedro R Peres-NetoO
چکیده

Phylogenetic Generalized Least Square (PGLS) is the tool of choice among phylogenetic comparative methods to measure the correlation between species features such as morphological and life-history traits or niche characteristics. In its usual form, it assumes that the residual variation follows a homogenous model of evolution across the branches of the phylogenetic tree. Since a homogenous model of evolution is unlikely to be realistic in nature, we explored the robustness of the phylogenetic regression when this assumption is violated. We did so by simulating a set of traits under various heterogeneous models of evolution, and evaluating the statistical performance (type I error [the percentage of tests based on samples that incorrectly rejected a true null hypothesis] and power [the percentage of tests that correctly rejected a false null hypothesis]) of classical phylogenetic regression. We found that PGLS has good power but unacceptable type I error rates. This finding is important since this method has been increasingly used in comparative analyses over the last decade. To address this issue, we propose a simple solution based on transforming the underlying variance-covariance matrix to adjust for model heterogeneity within PGLS. We suggest that heterogeneous rates of evolution might be particularly prevalent in large phylogenetic trees, while most current approaches assume a homogenous rate of evolution. Our analysis demonstrates that overlooking rate heterogeneity can result in inflated type I errors, thus misleading comparative analyses. We show that it is possible to correct for this bias even when the underlying model of evolution is not known a priori.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid maximum likelihood ancestral state reconstruction of continuous characters: A rerooting‐free algorithm

Ancestral state reconstruction is a method used to study the evolutionary trajectories of quantitative characters on phylogenies. Although efficient methods for univariate ancestral state reconstruction under a Brownian motion model have been described for at least 25 years, to date no generalization has been described to allow more complex evolutionary models, such as multivariate trait evolut...

متن کامل

A comparison of metrics for estimating phylogenetic signal under alternative evolutionary models

Several metrics have been developed for estimating phylogenetic signal in comparative data. These may be important both in guiding future studies on correlated evolution and for inferring broad-scale evolutionary and ecological processes (e.g., phylogenetic niche conservatism). Notwithstanding, the validity of some of these metrics is under debate, especially after the development of more sophi...

متن کامل

The best of both worlds: Phylogenetic eigenvector regression and mapping

Eigenfunction analyses have been widely used to model patterns of autocorrelation in time, space and phylogeny. In a phylogenetic context, Diniz-Filho et al. (1998) proposed what they called Phylogenetic Eigenvector Regression (PVR), in which pairwise phylogenetic distances among species are submitted to a Principal Coordinate Analysis, and eigenvectors are then used as explanatory variables in...

متن کامل

A mixed branch length model of heterotachy improves phylogenetic accuracy.

Evolutionary relationships are typically inferred from molecular sequence data using a statistical model of the evolutionary process. When the model accurately reflects the underlying process, probabilistic phylogenetic methods recover the correct relationships with high accuracy. There is ample evidence, however, that models commonly used today do not adequately reflect real-world evolutionary...

متن کامل

Shuffled Frog-Leaping Programming for Solving Regression Problems

There are various automatic programming models inspired by evolutionary computation techniques. Due to the importance of devising an automatic mechanism to explore the complicated search space of mathematical problems where numerical methods fails, evolutionary computations are widely studied and applied to solve real world problems. One of the famous algorithm in optimization problem is shuffl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ecology

دوره 97 2  شماره 

صفحات  -

تاریخ انتشار 2016